
Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

EPICS State Notation Language and Sequencer

Version 2.1

Ben Franksen

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)
(Wilhelm-Conrad-Röntgen Campus / BESSY II)

EPICS Meeting 2011 @ PSI, 2011

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Prologue: A Small Glossary

SNL State Notation Language

PV Process Variable

CA Channel Access

Sequencer The SNL runtime library

Sequencer The project that implements SNL

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Prologue: A Small Glossary

SNL State Notation Language

PV Process Variable

CA Channel Access

Sequencer The SNL runtime library

Sequencer The project that implements SNL

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Prologue: A Small Glossary

SNL State Notation Language

PV Process Variable

CA Channel Access

Sequencer The SNL runtime library

Sequencer The project that implements SNL

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Prologue: A Small Glossary

SNL State Notation Language

PV Process Variable

CA Channel Access

Sequencer The SNL runtime library

Sequencer The project that implements SNL

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Prologue: A Small Glossary

SNL State Notation Language

PV Process Variable

CA Channel Access

Sequencer The SNL runtime library

Sequencer The project that implements SNL

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction

2 What’s New

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction

2 What’s New

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction

2 What’s New

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction

2 What’s New

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction
SNL in a Nutshell
Limitations

2 What’s New
Overview
Scoped Variables
Safe Mode

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What is SNL?

a domain specific language

for programming control applications

in co-operation with an EPICS database

typically used when control flow gets more complex than
can be easily achieved with records and links

a (small) subset of the C language, plus features for

specifying finite state machines (state sets, keyword ss)
binding program variables to PVs (assign)
specifying that such variables are to be automatically
updated whenever the PV changes (monitor)
explicit interaction with PVs (pvPut, pvGet)

compiler translates SNL to C

internally PVs are accessed via Channel Access

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

skip animation

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Example

program level check

float v;
assign v to "Input voltage";
monitor v;

short light;
assign light to "Indicator light";

ss volt check {
state light off {

when (v > 5.0) {
/* turn light on */
light = 1;
pvPut(light);

} state light on
}

state light on {
when (v < 5.0) {

/* turn light off */
light = 0;
pvPut(light);

} state light off
}

}

declare variables

connect them to
EPICS PV names

automatically
update v to the
PV’s value

define a state set

if in this state

... and this
condition holds

... then execute
these actions

... and switch to
new state

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction
SNL in a Nutshell
Limitations

2 What’s New
Overview
Scoped Variables
Safe Mode

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Traditional Limitations of SNL

No type definitions

No procedures or other abstraction facilities

Only global variables, no initialization

Restricted set of data types, roughly corresponding to
EPICS field types:

char, short, int, long (and unsigned versions)
float, double

string (synonym for char[MAX STRING SIZE])
one or two dimensional arrays of above

Escape to C code often used as work-around

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Traditional Limitations of SNL

No type definitions

No procedures or other abstraction facilities

Only global variables, no initialization

Restricted set of data types, roughly corresponding to
EPICS field types:

char, short, int, long (and unsigned versions)
float, double

string (synonym for char[MAX STRING SIZE])
one or two dimensional arrays of above

Escape to C code often used as work-around

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Traditional Limitations of SNL

No type definitions

No procedures or other abstraction facilities

Only global variables, no initialization

Restricted set of data types, roughly corresponding to
EPICS field types:

char, short, int, long (and unsigned versions)
float, double

string (synonym for char[MAX STRING SIZE])
one or two dimensional arrays of above

Escape to C code often used as work-around

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Traditional Limitations of SNL

No type definitions

No procedures or other abstraction facilities

Only global variables, no initialization

Restricted set of data types, roughly corresponding to
EPICS field types:

char, short, int, long (and unsigned versions)
float, double

string (synonym for char[MAX STRING SIZE])
one or two dimensional arrays of above

Escape to C code often used as work-around

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Traditional Limitations of SNL

No type definitions

No procedures or other abstraction facilities

Only global variables, no initialization

Restricted set of data types, roughly corresponding to
EPICS field types:

char, short, int, long (and unsigned versions)
float, double

string (synonym for char[MAX STRING SIZE])
one or two dimensional arrays of above

Escape to C code often used as work-around

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Traditional Limitations of SNL

No type definitions

No procedures or other abstraction facilities

Only global variables, no initialization

Restricted set of data types, roughly corresponding to
EPICS field types:

char, short, int, long (and unsigned versions)
float, double

string (synonym for char[MAX STRING SIZE])
one or two dimensional arrays of above

Escape to C code often used as work-around

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction
SNL in a Nutshell
Limitations

2 What’s New
Overview
Scoped Variables
Safe Mode

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What’s new in 2.1?

Syntactic restrictions lifted
allow local variables in all blocks
support more variable types
declarations with multiple variables and initialization

Additions: you can now
jump to a new state from action code: state new state;

exit program instead of transition to a new state:
when(...) {...} exit

avoid ”used but not defined” warnings by declaring
foreign identifiers (variables, macros, whatever)

Safe Mode: avoid race conditions for global variables
Improved documentation
Started adding automated regression tests (no complete
coverage yet)
Many bugs fixed, general code cleanup
Deep refactorings may have introduced new bugs (but
hopefully only shallow ones)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What’s new in 2.1?

Syntactic restrictions lifted
allow local variables in all blocks
support more variable types
declarations with multiple variables and initialization

Additions: you can now
jump to a new state from action code: state new state;

exit program instead of transition to a new state:
when(...) {...} exit

avoid ”used but not defined” warnings by declaring
foreign identifiers (variables, macros, whatever)

Safe Mode: avoid race conditions for global variables
Improved documentation
Started adding automated regression tests (no complete
coverage yet)
Many bugs fixed, general code cleanup
Deep refactorings may have introduced new bugs (but
hopefully only shallow ones)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What’s new in 2.1?

Syntactic restrictions lifted
allow local variables in all blocks
support more variable types
declarations with multiple variables and initialization

Additions: you can now
jump to a new state from action code: state new state;

exit program instead of transition to a new state:
when(...) {...} exit

avoid ”used but not defined” warnings by declaring
foreign identifiers (variables, macros, whatever)

Safe ModeTM: avoid race conditions for global variables
Improved documentation
Started adding automated regression tests (no complete
coverage yet)
Many bugs fixed, general code cleanup
Deep refactorings may have introduced new bugs (but
hopefully only shallow ones)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What’s new in 2.1?

Syntactic restrictions lifted
allow local variables in all blocks
support more variable types
declarations with multiple variables and initialization

Additions: you can now
jump to a new state from action code: state new state;

exit program instead of transition to a new state:
when(...) {...} exit

avoid ”used but not defined” warnings by declaring
foreign identifiers (variables, macros, whatever)

Safe Mode: avoid race conditions for global variables
Improved documentation
Started adding automated regression tests (no complete
coverage yet)
Many bugs fixed, general code cleanup
Deep refactorings may have introduced new bugs (but
hopefully only shallow ones)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What’s new in 2.1?

Syntactic restrictions lifted
allow local variables in all blocks
support more variable types
declarations with multiple variables and initialization

Additions: you can now
jump to a new state from action code: state new state;

exit program instead of transition to a new state:
when(...) {...} exit

avoid ”used but not defined” warnings by declaring
foreign identifiers (variables, macros, whatever)

Safe Mode: avoid race conditions for global variables
Improved documentation
Started adding automated regression tests (no complete
coverage yet)
Many bugs fixed, general code cleanup
Deep refactorings may have introduced new bugs (but
hopefully only shallow ones)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What’s new in 2.1?

Syntactic restrictions lifted
allow local variables in all blocks
support more variable types
declarations with multiple variables and initialization

Additions: you can now
jump to a new state from action code: state new state;

exit program instead of transition to a new state:
when(...) {...} exit

avoid ”used but not defined” warnings by declaring
foreign identifiers (variables, macros, whatever)

Safe Mode: avoid race conditions for global variables
Improved documentation
Started adding automated regression tests (no complete
coverage yet)
Many bugs fixed, general code cleanup
Deep refactorings may have introduced new bugs (but
hopefully only shallow ones)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

What’s new in 2.1?

Syntactic restrictions lifted
allow local variables in all blocks
support more variable types
declarations with multiple variables and initialization

Additions: you can now
jump to a new state from action code: state new state;

exit program instead of transition to a new state:
when(...) {...} exit

avoid ”used but not defined” warnings by declaring
foreign identifiers (variables, macros, whatever)

Safe Mode: avoid race conditions for global variables
Improved documentation
Started adding automated regression tests (no complete
coverage yet)
Many bugs fixed, general code cleanup
Deep refactorings may have introduced new bugs (but
hopefully only shallow ones)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction
SNL in a Nutshell
Limitations

2 What’s New
Overview
Scoped Variables
Safe Mode

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Scoped Variables

Variables can be declared on all levels

They come in two variants
nested anywhere inside action blocks (state transition,
entry, exit)

temporary, like local (auto) variables in C
no assign to PVs allowed

at the start of states and state set blocks

persistent until program ends, like C static variables
but reentrant (if option +r is active)
and statically scoped, i.e. invisible to code outside the
block
can be assigned, monitored, etc. like globals

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction
SNL in a Nutshell
Limitations

2 What’s New
Overview
Scoped Variables
Safe Mode

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Motivation

From the SNL mission statement:

The state notation language allows programming
sequential operations that interact with EPICS
process variables without the usual complexity
involved with task scheduling, semaphores, event
handling, and I/O programming. [...]

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Motivation

From the SNL mission statement:

The state notation language allows programming
sequential operations that interact with EPICS
process variables without the usual complexity
involved with task scheduling, semaphores, event
handling, and I/O programming. [...]

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Motivation

From the SNL mission statement:

The state notation language allows programming
sequential operations that interact with EPICS
process variables without the usual complexity
involved with task scheduling, semaphores, event
handling, and I/O programming. [...]

Unfortunately this is not the case.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

The Problem

SNL variables are not protected from concurrent access

Threads involved

one or more state sets that access a variable
the CA callback thread, performing the variable updates
(monitor, get completion)

Variables can become corrupted if access is non-atomic

Resulting failures are extremely difficult to debug

There is no reliable work-around for the SNL programmer

CA updates can intervene at any time

A serious bug that has to be fixed

But how?

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

The Problem

SNL variables are not protected from concurrent access

Threads involved

one or more state sets that access a variable
the CA callback thread, performing the variable updates
(monitor, get completion)

Variables can become corrupted if access is non-atomic

Resulting failures are extremely difficult to debug

There is no reliable work-around for the SNL programmer

CA updates can intervene at any time

A serious bug that has to be fixed

But how?

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

The Problem

SNL variables are not protected from concurrent access

Threads involved

one or more state sets that access a variable
the CA callback thread, performing the variable updates
(monitor, get completion)

Variables can become corrupted if access is non-atomic

Resulting failures are extremely difficult to debug

There is no reliable work-around for the SNL programmer

CA updates can intervene at any time

A serious bug that has to be fixed

But how?

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

The Problem

SNL variables are not protected from concurrent access

Threads involved

one or more state sets that access a variable
the CA callback thread, performing the variable updates
(monitor, get completion)

Variables can become corrupted if access is non-atomic

Resulting failures are extremely difficult to debug

There is no reliable work-around for the SNL programmer

CA updates can intervene at any time

A serious bug that has to be fixed

But how?

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

The Problem

SNL variables are not protected from concurrent access

Threads involved

one or more state sets that access a variable
the CA callback thread, performing the variable updates
(monitor, get completion)

Variables can become corrupted if access is non-atomic

Resulting failures are extremely difficult to debug

There is no reliable work-around for the SNL programmer

CA updates can intervene at any time

A serious bug that has to be fixed

But how?

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

The Problem

SNL variables are not protected from concurrent access

Threads involved

one or more state sets that access a variable
the CA callback thread, performing the variable updates
(monitor, get completion)

Variables can become corrupted if access is non-atomic

Resulting failures are extremely difficult to debug

There is no reliable work-around for the SNL programmer

CA updates can intervene at any time

A serious bug that has to be fixed

But how?

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

The Problem

SNL variables are not protected from concurrent access

Threads involved

one or more state sets that access a variable
the CA callback thread, performing the variable updates
(monitor, get completion)

Variables can become corrupted if access is non-atomic

Resulting failures are extremely difficult to debug

There is no reliable work-around for the SNL programmer

CA updates can intervene at any time

A serious bug that has to be fixed

But how?

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

The Problem

SNL variables are not protected from concurrent access

Threads involved

one or more state sets that access a variable
the CA callback thread, performing the variable updates
(monitor, get completion)

Variables can become corrupted if access is non-atomic

Resulting failures are extremely difficult to debug

There is no reliable work-around for the SNL programmer

CA updates can intervene at any time

A serious bug that has to be fixed

But how?

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

The Problem

SNL variables are not protected from concurrent access

Threads involved

one or more state sets that access a variable
the CA callback thread, performing the variable updates
(monitor, get completion)

Variables can become corrupted if access is non-atomic

Resulting failures are extremely difficult to debug

There is no reliable work-around for the SNL programmer

CA updates can intervene at any time

A serious bug that has to be fixed

But how?

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Solution

Each state set operates on its own copy of each variable

Aynchronous CA updates operate on yet another copy

State sets are completely isolated from each other and
from asynchronous variable updates
Synchronization (exchange of data) happens only outside
user visible (SNL) code:

for monitored variables: immediately before
when-conditions are checked
for all assigned variables: inside pvGet / pvPut and
related built-in functions (but only the synchronous
versions that actually access the variable)

Nice side effect: conditions established in when(...)

clauses are never invalidated except explicitly by the
invoked action code

Not completely backwards compatible, therefore must be
enabled with an option +s. Implies re-entrant mode.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Solution

Each state set operates on its own copy of each variable

Aynchronous CA updates operate on yet another copy

State sets are completely isolated from each other and
from asynchronous variable updates
Synchronization (exchange of data) happens only outside
user visible (SNL) code:

for monitored variables: immediately before
when-conditions are checked
for all assigned variables: inside pvGet / pvPut and
related built-in functions (but only the synchronous
versions that actually access the variable)

Nice side effect: conditions established in when(...)

clauses are never invalidated except explicitly by the
invoked action code

Not completely backwards compatible, therefore must be
enabled with an option +s. Implies re-entrant mode.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Solution

Each state set operates on its own copy of each variable

Aynchronous CA updates operate on yet another copy

State sets are completely isolated from each other and
from asynchronous variable updates
Synchronization (exchange of data) happens only outside
user visible (SNL) code:

for monitored variables: immediately before
when-conditions are checked
for all assigned variables: inside pvGet / pvPut and
related built-in functions (but only the synchronous
versions that actually access the variable)

Nice side effect: conditions established in when(...)

clauses are never invalidated except explicitly by the
invoked action code

Not completely backwards compatible, therefore must be
enabled with an option +s. Implies re-entrant mode.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Solution

Each state set operates on its own copy of each variable

Aynchronous CA updates operate on yet another copy

State sets are completely isolated from each other and
from asynchronous variable updates
Synchronization (exchange of data) happens only outside
user visible (SNL) code:

for monitored variables: immediately before
when-conditions are checked
for all assigned variables: inside pvGet / pvPut and
related built-in functions (but only the synchronous
versions that actually access the variable)

Nice side effect: conditions established in when(...)

clauses are never invalidated except explicitly by the
invoked action code

Not completely backwards compatible, therefore must be
enabled with an option +s. Implies re-entrant mode.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Solution

Each state set operates on its own copy of each variable

Aynchronous CA updates operate on yet another copy

State sets are completely isolated from each other and
from asynchronous variable updates
Synchronization (exchange of data) happens only outside
user visible (SNL) code:

for monitored variables: immediately before
when-conditions are checked
for all assigned variables: inside pvGet / pvPut and
related built-in functions (but only the synchronous
versions that actually access the variable)

Nice side effect: conditions established in when(...)

clauses are never invalidated except explicitly by the
invoked action code

Not completely backwards compatible, therefore must be
enabled with an option +s. Implies re-entrant mode.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Solution

Each state set operates on its own copy of each variable

Aynchronous CA updates operate on yet another copy

State sets are completely isolated from each other and
from asynchronous variable updates
Synchronization (exchange of data) happens only outside
user visible (SNL) code:

for monitored variables: immediately before
when-conditions are checked
for all assigned variables: inside pvGet / pvPut and
related built-in functions (but only the synchronous
versions that actually access the variable)

Nice side effect: conditions established in when(...)

clauses are never invalidated except explicitly by the
invoked action code

Not completely backwards compatible, therefore must be
enabled with an option +s. Implies re-entrant mode.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Solution

Each state set operates on its own copy of each variable

Aynchronous CA updates operate on yet another copy

State sets are completely isolated from each other and
from asynchronous variable updates
Synchronization (exchange of data) happens only outside
user visible (SNL) code:

for monitored variables: immediately before
when-conditions are checked
for all assigned variables: inside pvGet / pvPut and
related built-in functions (but only the synchronous
versions that actually access the variable)

Nice side effect: conditions established in when(...)

clauses are never invalidated except explicitly by the
invoked action code

Not completely backwards compatible, therefore must be
enabled with an option +s. Implies re-entrant mode.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Solution

Each state set operates on its own copy of each variable

Aynchronous CA updates operate on yet another copy

State sets are completely isolated from each other and
from asynchronous variable updates
Synchronization (exchange of data) happens only outside
user visible (SNL) code:

for monitored variables: immediately before
when-conditions are checked
for all assigned variables: inside pvGet / pvPut and
related built-in functions (but only the synchronous
versions that actually access the variable)

Nice side effect: conditions established in when(...)

clauses are never invalidated except explicitly by the
invoked action code

Not completely backwards compatible, therefore must be
enabled with an option +s. Implies re-entrant mode.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Anonymous Pvs

Safe mode prevents state sets from communicating via
global variables

Event flags work but can communicate only booleans

For other data types: use Anonymous PVs

Syntax: global variable assigned to "", short form:

assign x; (scalars)
assign x {}; (arrays)

Use pvPut, pvGet, and monitor like with normal
(named) PVs

Named and anononymous PVs can be freely exchanged, all
built-in functions behave in the the same way

event flag ≡ anonymous boolean PV (modulo sync)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Anonymous Pvs

Safe mode prevents state sets from communicating via
global variables

Event flags work but can communicate only booleans

For other data types: use Anonymous PVs

Syntax: global variable assigned to "", short form:

assign x; (scalars)
assign x {}; (arrays)

Use pvPut, pvGet, and monitor like with normal
(named) PVs

Named and anononymous PVs can be freely exchanged, all
built-in functions behave in the the same way

event flag ≡ anonymous boolean PV (modulo sync)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Anonymous Pvs

Safe mode prevents state sets from communicating via
global variables

Event flags work but can communicate only booleans

For other data types: use Anonymous PVsTM

Syntax: global variable assigned to "", short form:

assign x; (scalars)
assign x {}; (arrays)

Use pvPut, pvGet, and monitor like with normal
(named) PVs

Named and anononymous PVs can be freely exchanged, all
built-in functions behave in the the same way

event flag ≡ anonymous boolean PV (modulo sync)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Anonymous Pvs

Safe mode prevents state sets from communicating via
global variables

Event flags work but can communicate only booleans

For other data types: use Anonymous PVs

Syntax: global variable assigned to "", short form:

assign x; (scalars)
assign x {}; (arrays)

Use pvPut, pvGet, and monitor like with normal
(named) PVs

Named and anononymous PVs can be freely exchanged, all
built-in functions behave in the the same way

event flag ≡ anonymous boolean PV (modulo sync)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Anonymous Pvs

Safe mode prevents state sets from communicating via
global variables

Event flags work but can communicate only booleans

For other data types: use Anonymous PVs

Syntax: global variable assigned to "", short form:

assign x; (scalars)
assign x {}; (arrays)

Use pvPut, pvGet, and monitor like with normal
(named) PVs

Named and anononymous PVs can be freely exchanged, all
built-in functions behave in the the same way

event flag ≡ anonymous boolean PV (modulo sync)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Anonymous Pvs

Safe mode prevents state sets from communicating via
global variables

Event flags work but can communicate only booleans

For other data types: use Anonymous PVs

Syntax: global variable assigned to "", short form:

assign x; (scalars)
assign x {}; (arrays)

Use pvPut, pvGet, and monitor like with normal
(named) PVs

Named and anononymous PVs can be freely exchanged, all
built-in functions behave in the the same way

event flag ≡ anonymous boolean PV (modulo sync)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Anonymous Pvs

Safe mode prevents state sets from communicating via
global variables

Event flags work but can communicate only booleans

For other data types: use Anonymous PVs

Syntax: global variable assigned to "", short form:

assign x; (scalars)
assign x {}; (arrays)

Use pvPut, pvGet, and monitor like with normal
(named) PVs

Named and anononymous PVs can be freely exchanged, all
built-in functions behave in the the same way

event flag ≡ anonymous boolean PV (modulo sync)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Anonymous Pvs

Safe mode prevents state sets from communicating via
global variables

Event flags work but can communicate only booleans

For other data types: use Anonymous PVs

Syntax: global variable assigned to "", short form:

assign x; (scalars)
assign x {}; (arrays)

Use pvPut, pvGet, and monitor like with normal
(named) PVs

Named and anononymous PVs can be freely exchanged, all
built-in functions behave in the the same way

event flag ≡ anonymous boolean PV (modulo sync)

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Anonymous Pvs

Safe mode prevents state sets from communicating via
global variables

Event flags work but can communicate only booleans

For other data types: use Anonymous PVs

Syntax: global variable assigned to "", short form:

assign x; (scalars)
assign x {}; (arrays)

Use pvPut, pvGet, and monitor like with normal
(named) PVs

Named and anononymous PVs can be freely exchanged, all
built-in functions behave in the the same way

event flag ≡ anonymous boolean PV (modulo sync)

Rationale

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Outline

1 Introduction
SNL in a Nutshell
Limitations

2 What’s New
Overview
Scoped Variables
Safe Mode

3 Next Steps

4 Summary

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Next Steps

Integrate code from DESY to support redundant IOCs

Add more regression tests

Remove stuff that is ugly and obsolete

PV layer (a C++ wrapper around CA or other protocols)
devSequencer (device support for monitoring seq’s internal
state)

Lift further restrictions

allow foreign (C) types to be used in declarations
define data types (e.g. struct) in SNL?

New notation for assign, monitor, sync, etc.

all extra attributes of a variable in one place
obviate the need for user defined CPP macros
need a good idea for the syntax

Add some kind of abstraction facility

parameterizable state sets (a.k.a. procedures) explain details

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Next Steps

Integrate code from DESY to support redundant IOCs

Add more regression tests

Remove stuff that is ugly and obsolete

PV layer (a C++ wrapper around CA or other protocols)
devSequencer (device support for monitoring seq’s internal
state)

Lift further restrictions

allow foreign (C) types to be used in declarations
define data types (e.g. struct) in SNL?

New notation for assign, monitor, sync, etc.

all extra attributes of a variable in one place
obviate the need for user defined CPP macros
need a good idea for the syntax

Add some kind of abstraction facility

parameterizable state sets (a.k.a. procedures) explain details

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Next Steps

Integrate code from DESY to support redundant IOCs

Add more regression tests

Remove stuff that is ugly and obsolete

PV layer (a C++ wrapper around CA or other protocols)
devSequencer (device support for monitoring seq’s internal
state)

Lift further restrictions

allow foreign (C) types to be used in declarations
define data types (e.g. struct) in SNL?

New notation for assign, monitor, sync, etc.

all extra attributes of a variable in one place
obviate the need for user defined CPP macros
need a good idea for the syntax

Add some kind of abstraction facility

parameterizable state sets (a.k.a. procedures) explain details

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Next Steps

Integrate code from DESY to support redundant IOCs

Add more regression tests

Remove stuff that is ugly and obsolete

PV layer (a C++ wrapper around CA or other protocols)
devSequencer (device support for monitoring seq’s internal
state)

Lift further restrictions

allow foreign (C) types to be used in declarations
define data types (e.g. struct) in SNL?

New notation for assign, monitor, sync, etc.

all extra attributes of a variable in one place
obviate the need for user defined CPP macros
need a good idea for the syntax

Add some kind of abstraction facility

parameterizable state sets (a.k.a. procedures) explain details

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Next Steps

Integrate code from DESY to support redundant IOCs

Add more regression tests

Remove stuff that is ugly and obsolete

PV layer (a C++ wrapper around CA or other protocols)
devSequencer (device support for monitoring seq’s internal
state)

Lift further restrictions

allow foreign (C) types to be used in declarations
define data types (e.g. struct) in SNL?

New notation for assign, monitor, sync, etc.

all extra attributes of a variable in one place
obviate the need for user defined CPP macros
need a good idea for the syntax

Add some kind of abstraction facility

parameterizable state sets (a.k.a. procedures) explain details

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Next Steps

Integrate code from DESY to support redundant IOCs

Add more regression tests

Remove stuff that is ugly and obsolete

PV layer (a C++ wrapper around CA or other protocols)
devSequencer (device support for monitoring seq’s internal
state)

Lift further restrictions

allow foreign (C) types to be used in declarations
define data types (e.g. struct) in SNL?

New notation for assign, monitor, sync, etc.

all extra attributes of a variable in one place
obviate the need for user defined CPP macros
need a good idea for the syntax

Add some kind of abstraction facility

parameterizable state sets (a.k.a. procedures) explain details

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Summary

For a long time the Sequencer suffered from neglect.
This has changed, it is again actively maintained, new
features are being added, bugs are getting fixed, even deep
and difficult ones.

The 2.1.x releases prove that many of the traditional
limitations and restrictions in SNL can be overcome with
reasonable effort by suitable re-engineering.
Expect further improvements in version 2.2.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Summary

For a long time the Sequencer suffered from neglect.
This has changed, it is again actively maintained, new
features are being added, bugs are getting fixed, even deep
and difficult ones.

The 2.1.x releases prove that many of the traditional
limitations and restrictions in SNL can be overcome with
reasonable effort by suitable re-engineering.
Expect further improvements in version 2.2.

Sequencer 2.1

Ben Franksen

Introduction

SNL in a Nutshell

Limitations

What’s New

Overview

Scoped Variables

Safe Mode

Problem

Solution

Next Steps

Summary

Further Reading

http://www-csr.bessy.de/control/SoftDist/sequencer/

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

5 Appendix
Types and Declarations
Declaration Example
Rationale for Safe Mode
Procedures

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Outline

5 Appendix
Types and Declarations
Declaration Example
Rationale for Safe Mode
Procedures

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Types and Declarations

Type expressions

any combination of pointer + array + base types (e.g.
string (*a4ps[4])[5])
fixed size integral types as defined in C99:
int8 t, int16 t, int32 t, uint8 t, uint16 t, uint32 t

Declaration Syntax

Multiple variables in one declaration
Initialization, including aggregate (array) initializers

All this should work as in C

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Types and Declarations

Type expressions

any combination of pointer + array + base types (e.g.
string (*a4ps[4])[5])
fixed size integral types as defined in C99:
int8 t, int16 t, int32 t, uint8 t, uint16 t, uint32 t

Declaration Syntax

Multiple variables in one declaration
Initialization, including aggregate (array) initializers

All this should work as in C

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Types and Declarations

Type expressions

any combination of pointer + array + base types (e.g.
string (*a4ps[4])[5])
fixed size integral types as defined in C99:
int8 t, int16 t, int32 t, uint8 t, uint16 t, uint32 t

Declaration Syntax

Multiple variables in one declaration
Initialization, including aggregate (array) initializers

All this should work as in C

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Types and Declarations

Type expressions

any combination of pointer + array + base types (e.g.
string (*a4ps[4])[5])
fixed size integral types as defined in C99:
int8 t, int16 t, int32 t, uint8 t, uint16 t, uint32 t

Declaration Syntax

Multiple variables in one declaration
Initialization, including aggregate (array) initializers

All this should work as in C

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Types and Declarations

Type expressions

any combination of pointer + array + base types (e.g.
string (*a4ps[4])[5])
fixed size integral types as defined in C99:
int8 t, int16 t, int32 t, uint8 t, uint16 t, uint32 t

Declaration Syntax

Multiple variables in one declaration
Initialization, including aggregate (array) initializers

All this should work as in C

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Types and Declarations

Type expressions

any combination of pointer + array + base types (e.g.
string (*a4ps[4])[5])
fixed size integral types as defined in C99:
int8 t, int16 t, int32 t, uint8 t, uint16 t, uint32 t

Declaration Syntax

Multiple variables in one declaration
Initialization, including aggregate (array) initializers

All this should work as in C

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Types and Declarations

Type expressions

any combination of pointer + array + base types (e.g.
string (*a4ps[4])[5])
fixed size integral types as defined in C99:
int8 t, int16 t, int32 t, uint8 t, uint16 t, uint32 t

Declaration Syntax

Multiple variables in one declaration
Initialization, including aggregate (array) initializers

All this should work as in C

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Outline

5 Appendix
Types and Declarations
Declaration Example
Rationale for Safe Mode
Procedures

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

A Real-World Example

ss AICresponsibleStates {
state st process {

int resp[MAXSEG][MAXERR] = {
/* Segment * ERROR: blTs, blW, idTs, idW, d1ts, d1w, d2ts, d2w, landau, vacuum */
/***/
/* seg[1] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[2] */ { 2, 2, 2, 1, 1, 1, 1, 2, 1, 1},
/* seg[3] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[4] */ { 2, 2, 2, 1, 1, 1, 1, 1, 1, 1},
/* seg[5] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[6] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},

};

when(delay(1)) {
int isE = 0, isM = 0;
int s, e;

for(s = 0; s < MAXSEG; s++) {
if(seg[s] == 1) { /* segments: 0=ok */

for(e = 0; e < MAXERR; e++) {
if(err[e] == 0) { /* errors: 1=ok */

if(resp[s][e] == 1) {
isM = 1;

}
if(resp[s][e] == 2) {

isE = 2;
}

}
}

}
}

AICresponsible = isE + isM;
pvPut(AICresponsible);

} state st process
}

}

declaration local to
state

(multi-variable)
declarations local to
transition

scalar initializers

array initializer

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

A Real-World Example

ss AICresponsibleStates {
state st process {

int resp[MAXSEG][MAXERR] = {
/* Segment * ERROR: blTs, blW, idTs, idW, d1ts, d1w, d2ts, d2w, landau, vacuum */
/***/
/* seg[1] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[2] */ { 2, 2, 2, 1, 1, 1, 1, 2, 1, 1},
/* seg[3] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[4] */ { 2, 2, 2, 1, 1, 1, 1, 1, 1, 1},
/* seg[5] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[6] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},

};

when(delay(1)) {
int isE = 0, isM = 0;
int s, e;

for(s = 0; s < MAXSEG; s++) {
if(seg[s] == 1) { /* segments: 0=ok */

for(e = 0; e < MAXERR; e++) {
if(err[e] == 0) { /* errors: 1=ok */

if(resp[s][e] == 1) {
isM = 1;

}
if(resp[s][e] == 2) {

isE = 2;
}

}
}

}
}

AICresponsible = isE + isM;
pvPut(AICresponsible);

} state st process
}

}

declaration local to
state

(multi-variable)
declarations local to
transition

scalar initializers

array initializer

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

A Real-World Example

ss AICresponsibleStates {
state st process {

int resp[MAXSEG][MAXERR] = {
/* Segment * ERROR: blTs, blW, idTs, idW, d1ts, d1w, d2ts, d2w, landau, vacuum */
/***/
/* seg[1] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[2] */ { 2, 2, 2, 1, 1, 1, 1, 2, 1, 1},
/* seg[3] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[4] */ { 2, 2, 2, 1, 1, 1, 1, 1, 1, 1},
/* seg[5] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[6] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},

};

when(delay(1)) {
int isE = 0, isM = 0;
int s, e;

for(s = 0; s < MAXSEG; s++) {
if(seg[s] == 1) { /* segments: 0=ok */

for(e = 0; e < MAXERR; e++) {
if(err[e] == 0) { /* errors: 1=ok */

if(resp[s][e] == 1) {
isM = 1;

}
if(resp[s][e] == 2) {

isE = 2;
}

}
}

}
}

AICresponsible = isE + isM;
pvPut(AICresponsible);

} state st process
}

}

declaration local to
state

(multi-variable)
declarations local to
transition

scalar initializers

array initializer

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

A Real-World Example

ss AICresponsibleStates {
state st process {

int resp[MAXSEG][MAXERR] = {
/* Segment * ERROR: blTs, blW, idTs, idW, d1ts, d1w, d2ts, d2w, landau, vacuum */
/***/
/* seg[1] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[2] */ { 2, 2, 2, 1, 1, 1, 1, 2, 1, 1},
/* seg[3] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[4] */ { 2, 2, 2, 1, 1, 1, 1, 1, 1, 1},
/* seg[5] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[6] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},

};

when(delay(1)) {
int isE = 0, isM = 0;
int s, e;

for(s = 0; s < MAXSEG; s++) {
if(seg[s] == 1) { /* segments: 0=ok */

for(e = 0; e < MAXERR; e++) {
if(err[e] == 0) { /* errors: 1=ok */

if(resp[s][e] == 1) {
isM = 1;

}
if(resp[s][e] == 2) {

isE = 2;
}

}
}

}
}

AICresponsible = isE + isM;
pvPut(AICresponsible);

} state st process
}

}

declaration local to
state

(multi-variable)
declarations local to
transition

scalar initializers

array initializer

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

A Real-World Example

ss AICresponsibleStates {
state st process {

int resp[MAXSEG][MAXERR] = {
/* Segment * ERROR: blTs, blW, idTs, idW, d1ts, d1w, d2ts, d2w, landau, vacuum */
/***/
/* seg[1] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[2] */ { 2, 2, 2, 1, 1, 1, 1, 2, 1, 1},
/* seg[3] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[4] */ { 2, 2, 2, 1, 1, 1, 1, 1, 1, 1},
/* seg[5] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},
/* seg[6] */ { 2, 2, 2, 2, 1, 1, 1, 1, 1, 1},

};

when(delay(1)) {
int isE = 0, isM = 0;
int s, e;

for(s = 0; s < MAXSEG; s++) {
if(seg[s] == 1) { /* segments: 0=ok */

for(e = 0; e < MAXERR; e++) {
if(err[e] == 0) { /* errors: 1=ok */

if(resp[s][e] == 1) {
isM = 1;

}
if(resp[s][e] == 2) {

isE = 2;
}

}
}

}
}

AICresponsible = isE + isM;
pvPut(AICresponsible);

} state st process
}

}

declaration local to
state

(multi-variable)
declarations local to
transition

scalar initializers

array initializer

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Outline

5 Appendix
Types and Declarations
Declaration Example
Rationale for Safe Mode
Procedures

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Safe Mode: Rationale

Why not simply lock variables?

No programmer intervention should be needed

Simultaneously lock all variables used in an action block
during the execution of that block

What if action code calls epicsThreadSleep?

Locking would prevent

other state sets that use these variables from proceeding
the CA callback thread from proceeding
Note: there is only one CA callback thread for all SNL
programs on the same IOC

return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Safe Mode: Rationale

Why not simply lock variables?

No programmer intervention should be needed

Simultaneously lock all variables used in an action block
during the execution of that block

What if action code calls epicsThreadSleep?

Locking would prevent

other state sets that use these variables from proceeding
the CA callback thread from proceeding
Note: there is only one CA callback thread for all SNL
programs on the same IOC

return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Safe Mode: Rationale

Why not simply lock variables?

No programmer intervention should be needed

Simultaneously lock all variables used in an action block
during the execution of that block

What if action code calls epicsThreadSleep?

Locking would prevent

other state sets that use these variables from proceeding
the CA callback thread from proceeding
Note: there is only one CA callback thread for all SNL
programs on the same IOC

return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Safe Mode: Rationale

Why not simply lock variables?

No programmer intervention should be needed

Simultaneously lock all variables used in an action block
during the execution of that block

What if action code calls epicsThreadSleep?

Locking would prevent

other state sets that use these variables from proceeding
the CA callback thread from proceeding
Note: there is only one CA callback thread for all SNL
programs on the same IOC

return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Safe Mode: Rationale

Why not simply lock variables?

No programmer intervention should be needed

Simultaneously lock all variables used in an action block
during the execution of that block

What if action code calls epicsThreadSleep?

Locking would prevent

other state sets that use these variables from proceeding
the CA callback thread from proceeding
Note: there is only one CA callback thread for all SNL
programs on the same IOC

return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Safe Mode: Rationale

Why not simply lock variables?

No programmer intervention should be needed

Simultaneously lock all variables used in an action block
during the execution of that block

What if action code calls epicsThreadSleep?

Locking would prevent

other state sets that use these variables from proceeding
the CA callback thread from proceeding
Note: there is only one CA callback thread for all SNL
programs on the same IOC

return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Safe Mode: Rationale

Why not simply lock variables?

No programmer intervention should be needed

Simultaneously lock all variables used in an action block
during the execution of that block

What if action code calls epicsThreadSleep?

Locking would prevent

other state sets that use these variables from proceeding
the CA callback thread from proceeding
Note: there is only one CA callback thread for all SNL
programs on the same IOC

return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Safe Mode: Rationale

Why not simply lock variables?

No programmer intervention should be needed

Simultaneously lock all variables used in an action block
during the execution of that block

What if action code calls epicsThreadSleep?

Locking would prevent

other state sets that use these variables from proceeding
the CA callback thread from proceeding
Note: there is only one CA callback thread for all SNL
programs on the same IOC

return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Outline

5 Appendix
Types and Declarations
Declaration Example
Rationale for Safe Mode
Procedures

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Procedures: Parameterizable State Sets

Rationale

add abstraction to SNL
avoid repetition, reduce cut and paste
obviate the need for escape to C code

Design

syntactically like a state set with parameters
but runtime behavior is rather like a procedure call, i.e.
synchronous
calling a procedure

call procedure name(arg1, arg2, ...);

returning from a procedure

when(...) {...} return

Implementation

not easy, needs deep refactoring
don’t hold your breath return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Procedures: Parameterizable State Sets

Rationale

add abstraction to SNL
avoid repetition, reduce cut and paste
obviate the need for escape to C code

Design

syntactically like a state set with parameters
but runtime behavior is rather like a procedure call, i.e.
synchronous
calling a procedure

call procedure name(arg1, arg2, ...);

returning from a procedure

when(...) {...} return

Implementation

not easy, needs deep refactoring
don’t hold your breath return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Procedures: Parameterizable State Sets

Rationale

add abstraction to SNL
avoid repetition, reduce cut and paste
obviate the need for escape to C code

Design

syntactically like a state set with parameters
but runtime behavior is rather like a procedure call, i.e.
synchronous
calling a procedure

call procedure name(arg1, arg2, ...);

returning from a procedure

when(...) {...} return

Implementation

not easy, needs deep refactoring
don’t hold your breath return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Procedures: Parameterizable State Sets

Rationale

add abstraction to SNL
avoid repetition, reduce cut and paste
obviate the need for escape to C code

Design

syntactically like a state set with parameters
but runtime behavior is rather like a procedure call, i.e.
synchronous
calling a procedure

call procedure name(arg1, arg2, ...);

returning from a procedure

when(...) {...} return

Implementation

not easy, needs deep refactoring
don’t hold your breath return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Procedures: Parameterizable State Sets

Rationale

add abstraction to SNL
avoid repetition, reduce cut and paste
obviate the need for escape to C code

Design

syntactically like a state set with parameters
but runtime behavior is rather like a procedure call, i.e.
synchronous
calling a procedure

call procedure name(arg1, arg2, ...);

returning from a procedure

when(...) {...} return

Implementation

not easy, needs deep refactoring
don’t hold your breath return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Procedures: Parameterizable State Sets

Rationale

add abstraction to SNL
avoid repetition, reduce cut and paste
obviate the need for escape to C code

Design

syntactically like a state set with parameters
but runtime behavior is rather like a procedure call, i.e.
synchronous
calling a procedure

call procedure name(arg1, arg2, ...);

returning from a procedure

when(...) {...} return

Implementation

not easy, needs deep refactoring
don’t hold your breath return to main talk

Sequencer 2.1

Ben Franksen

Appendix

Types and
Declarations

Declaration Example

Rationale for Safe
Mode

Procedures

Procedures: Parameterizable State Sets

Rationale

add abstraction to SNL
avoid repetition, reduce cut and paste
obviate the need for escape to C code

Design

syntactically like a state set with parameters
but runtime behavior is rather like a procedure call, i.e.
synchronous
calling a procedure

call procedure name(arg1, arg2, ...);

returning from a procedure

when(...) {...} return

Implementation

not easy, needs deep refactoring
don’t hold your breath return to main talk

	Introduction
	SNL in a Nutshell
	Limitations

	What's New
	Overview
	Scoped Variables
	Safe Mode

	Next Steps
	Summary
	Appendix
	Appendix
	Types and Declarations
	Declaration Example
	Rationale for Safe Mode
	Procedures

